Musings at the Intersection of Launch Angle Consistency and Hard-Hit Rate
If you follow the work of Alex Chamberlain at all, you’ve heard of the value of launch angle consistency. I’m not going to recapitulate his body of work on the subject, but briefly: hitters with tighter launch angle distributions routinely run higher BABIPs, and you can think of launch angle consistency as roughly a proxy for “hit tool.”
Most of this comes down to avoiding terrible batted ball outcomes. The two worst things you can do when you put the ball in play are to hit it straight down or straight up. Given that balls are, on average, hit mostly forward and with a tiny bit of loft — breaking news, I know — launch angle consistency is a great proxy for how often you avoid those, because the more -80s and +80s you put in your sample of mostly 10s and 20s, the higher the standard deviation gets.
One thing I’ve often wondered is whether this idea of consistency holds up for subsets of batted balls. Intuitively, it seems like it might. Take hard-hit balls, for example. If you’re hitting the ball 95 mph or harder, you really don’t want to squander it by hitting the ball on the ground or straight into the air. The distribution peaks at 30 degrees, but anything between 10 and 35 is a solid outcome.
With this in mind, I decided to look for batters who grouped their hard-hit balls most tightly. Having a narrow distribution seems like a great way to maximize good outcomes. Which player, you ask, has the tightest launch angle consistency (I’m just using standard deviation here) on hard-hit balls? I’m glad you asked — it’s Dee Strange-Gordon. Read the rest of this entry »