The Seam-Shifted Revolution Is Headed for the Mainstream
Hey there! I want to give you a heads up about this article, because it doesn’t fit into a normal genre I write. Today, I won’t be telling you some new insight about a player you like, or creating some new nonsense statistic that tries to pull meaning from noise. This is a story about how baseball analysis is changing right before our eyes. A group of scientists and baseball thinkers are redefining the way we think about pitch movement, and I think it’s worth highlighting even if I don’t have anything to add to the conversation yet, because this new avenue of research is going to be front and center in Statcast-based analysis over the next few years.
“Seam-shifted wake,” as Andrew Smith, a student of Dr. Barton Smith (no relation) coined it, is a source of pitch movement that the first attempts at understanding the physics of a pitched baseball overlooked. It has already changed the way that coaches and pitchers approach pitch design, and due to recent data advances, it’s about to be everywhere. So let’s go over how we got here, to this newly observable way that pitchers deceive hitters, by starting at the beginning and working forward.
At its core, baseball is a game about one person trying to throw a ball past another person. There are other trappings — bases and baserunners, umpires, a strike zone, the mythology of Babe Ruth, and a million other sundry things. At the end of the day, though, everything starts with the pitcher trying to throw a ball past the batter.
Accordingly, baseball analysis over the years has focused on describing the flight of that ball. For a time, that simply meant describing the shape of pitches — they don’t call them curveballs for nothing. The next step was velocity — radar guns let us appreciate fastballs numerically rather than merely aesthetically.
In the past 15 years, the amount and scope of pitch-level analytical data has exploded. First, PITCHf/x quantified pitch location and movement. When we report a pitcher’s chase rate or how often a batter swings at pitches in the strike zone, it’s because the location where each pitch crosses the plate is recorded and logged. When we say a pitcher has eight inches of horizontal break on their slider, it’s because new technology allows us to measure it.
When Statcast debuted in 2015, it added another wrinkle: radar tracked the spin rate of each pitch in flight, putting a numerical value on something that had previously been only qualitative; a pitcher’s ability to generate movement through spin. Doctor Alan Nathan has written several authoritative studies discussing the value of this spin data. Read the rest of this entry »